Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH

Identifieur interne : 000C43 ( France/Analysis ); précédent : 000C42; suivant : 000C44

Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH

Auteurs : RBID : Pascal:03-0232949

Descripteurs français

English descriptors

Abstract

An implementation of the GW approximation (GWA) based on the all-electron projector-augmented-wave (PAW) method is presented, where the screened Coulomb interaction is computed within the random-phase approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH, and KH. To illustrate the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0232949

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH</title>
<author>
<name sortKey="Lebegue, S" uniqKey="Lebegue S">S. Lebegue</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 du CNRS, 23 rue du Loess, 67037 Strasbourg, France</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 du CNRS, 23 rue du Loess, 67037 Strasbourg</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Alsace</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics, University of California, Davis, California 95616</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Physics, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Arnaud, B" uniqKey="Arnaud B">B. Arnaud</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Groupe Matiere condensee et Materiaux (GMCM), Campus de Beaulieu-Bat 11A 35042 Rennes cedex, France</s1>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Groupe Matiere condensee et Materiaux (GMCM), Campus de Beaulieu-Bat 11A 35042 Rennes cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alouani, M" uniqKey="Alouani M">M. Alouani</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 du CNRS, 23 rue du Loess, 67037 Strasbourg, France</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 du CNRS, 23 rue du Loess, 67037 Strasbourg</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Alsace</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93111</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Kavli Institute of Theoretical Physics, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bloechl, P E" uniqKey="Bloechl P">P. E. Bloechl</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93111</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Kavli Institute of Theoretical Physics, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute of Theoretical Physics, Clausthal University of Technology, Leibnizstr. 10 D-38678 Clausthal Zellerfeld, Germany</s1>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Theoretical Physics, Clausthal University of Technology, Leibnizstr. 10 D-38678 Clausthal Zellerfeld</wicri:regionArea>
<wicri:noRegion>38678 Clausthal Zellerfeld</wicri:noRegion>
<wicri:noRegion>Leibnizstr. 10 D-38678 Clausthal Zellerfeld</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0232949</idno>
<date when="2003-04-15">2003-04-15</date>
<idno type="stanalyst">PASCAL 03-0232949 AIP</idno>
<idno type="RBID">Pascal:03-0232949</idno>
<idno type="wicri:Area/Main/Corpus">00D561</idno>
<idno type="wicri:Area/Main/Repository">00C474</idno>
<idno type="wicri:Area/France/Extraction">000C43</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>APW calculations</term>
<term>Alkali metal halides</term>
<term>Aluminium compounds</term>
<term>Elemental semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Insulating materials</term>
<term>Measuring methods</term>
<term>Potassium compounds</term>
<term>Silicon</term>
<term>Silicon compounds</term>
<term>Sodium compounds</term>
<term>Theoretical study</term>
<term>Total energy</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7115M</term>
<term>7120N</term>
<term>Etude théorique</term>
<term>Méthode mesure</term>
<term>Calcul APW</term>
<term>Energie totale</term>
<term>Isolant</term>
<term>Métal alcalin halogénure</term>
<term>Sodium composé</term>
<term>Potassium composé</term>
<term>Semiconducteur élémentaire</term>
<term>Silicium</term>
<term>Semiconducteur bande interdite large</term>
<term>Silicium composé</term>
<term>Semiconducteur III-V</term>
<term>Aluminium composé</term>
<term>Indium composé</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Isolant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An implementation of the GW approximation (GWA) based on the all-electron projector-augmented-wave (PAW) method is presented, where the screened Coulomb interaction is computed within the random-phase approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH, and KH. To illustrate the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>67</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEBEGUE (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ARNAUD (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ALOUANI (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BLOECHL (P. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 du CNRS, 23 rue du Loess, 67037 Strasbourg, France</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of California, Davis, California 95616</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Groupe Matiere condensee et Materiaux (GMCM), Campus de Beaulieu-Bat 11A 35042 Rennes cedex, France</s1>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93111</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Theoretical Physics, Clausthal University of Technology, Leibnizstr. 10 D-38678 Clausthal Zellerfeld, Germany</s1>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>155208-155208-10</s2>
</fA20>
<fA21>
<s1>2003-04-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0232949</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An implementation of the GW approximation (GWA) based on the all-electron projector-augmented-wave (PAW) method is presented, where the screened Coulomb interaction is computed within the random-phase approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH, and KH. To illustrate the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7115M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode mesure</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Measuring methods</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Calcul APW</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>APW calculations</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Energie totale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Total energy</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Isolant</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Insulating materials</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Métal alcalin halogénure</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Alkali metal halides</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Sodium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Sodium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Potassium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Potassium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur élémentaire</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Elemental semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Silicium composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fN21>
<s1>139</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0319M001682</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000C43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0232949
   |texte=   Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024